Math 4300
Homework 9 Solutions
(1)(a) Let A, B be distinct points in a Pasch geometry.

In $H W 7$ we showed that

$$
\overline{A B}, \operatorname{int}(\overline{A B}), \overleftrightarrow{A B}, \overrightarrow{A B} \text {, and } \operatorname{int}(\overrightarrow{A B})
$$ are all convex sets.

Let S be $\overline{A B}, \operatorname{int}(\overline{A B}), \stackrel{\rightharpoonup}{A B}$, $\overrightarrow{A B}$, or int ($\overrightarrow{A B}$).
Then S is convex.
Thus, from a theorem in class, if $S \cap l=\phi$, then all the points of S lie on the same side of l.
(1) (b) Suppose we have a Pasch geometry.

Suppose $A-B-C$ and $\stackrel{A C}{A C l}=\{B\}$.
Recall that

$$
\begin{aligned}
& \text { call that } \\
& \operatorname{int}(\overrightarrow{B A})=\overrightarrow{B A}-\{B\}
\end{aligned}
$$

and

$$
\operatorname{int}(\overline{B A})=\overline{B A}-\{A, B\}
$$

Since $A-B-C$ we know

$$
\begin{aligned}
& \text { ce } A-B-C \text { we know } \overleftrightarrow{B} \subseteq \stackrel{\leftrightarrow}{A C} \\
& \text { int }(\overrightarrow{B A}) \subseteq \operatorname{int}(\overrightarrow{B A}) \subseteq \overleftrightarrow{A C}
\end{aligned}
$$

Since $B \notin$ int $(\overrightarrow{B A})$ and int $(\overrightarrow{B A}) \subseteq \stackrel{\leftrightarrow}{A C}$ and $\stackrel{A C}{A C}=\{B\}$ we know that $\operatorname{int}(\overrightarrow{B A}) \cap l=\phi$.
Thus from (a), all of int $(\overrightarrow{B A})$ lies on the same side of l.
Since int $(\overrightarrow{B A}) \subseteq$ int $(\overrightarrow{B A})$ we know int $(\overrightarrow{B A})$ and int $(\overrightarrow{B A})$ lie on the same side of l.

What about int $(\overrightarrow{B C})$ and int $(\overrightarrow{B A})$?
Since $\stackrel{A}{A C} \cap l=\{B\} \neq \varnothing$ we know that A and C lie on opposite sides of l.
We know all of int $(\overrightarrow{B A})$ lies on one sidle of l.
A similar angumert shows that all of int $(\overrightarrow{B C})$ lies on the same side of l.
Since $A \in \operatorname{int}(\overrightarrow{B A})$ and $c \in \operatorname{int}(\overrightarrow{B C})$ this gives that int ($\overrightarrow{B A}$) and int $(\overrightarrow{B C})$ lie on opposite sides of l
(2) Suppose $\angle A V B$ is an angle and B and P are on the same side of $\overleftrightarrow{V A}$.
(\Leftrightarrow) Suppose $P \in \operatorname{int}(\angle A \cup B)$.
Then, $\overrightarrow{V P} \cap \overline{A B} \neq \phi$ by the crossbar theorem.
So, $\breve{V P} \cap \overline{A B} \neq \phi$.
So, A and B are on $\underset{\leftrightarrows}{\leftrightarrows}$
 opposite sides of $\overleftrightarrow{V P}$.
(B) Now suppose that A and B are on opposite sides of $\stackrel{\rightharpoonup}{V p}$.
By the PSP axiom,

$$
\overrightarrow{A B} \cap \stackrel{\rightharpoonup}{V P} \neq \phi
$$

Since $A, B \notin \overleftrightarrow{V P}$ we

get $\underset{\leftrightarrows}{\operatorname{int}(\overrightarrow{A B}) \cap \overleftrightarrow{V P}} \neq \phi$.
since $\stackrel{A B}{\oplus} \overleftrightarrow{V A}=\{A\}$ we know

$$
\operatorname{int}(\overrightarrow{A B}) \cap \overleftrightarrow{\vee A}=\phi
$$

Thus from problem 1, all
of int $(\overrightarrow{A B})$ lies on the same side of $\stackrel{\leftrightarrow}{V A}$.
Since $B \in \operatorname{int}(\overrightarrow{A B})$, and by assumption B and P are on the same side of $\overleftrightarrow{V A}$, we get that int $(\overrightarrow{A B})$ and P lie on the same side of $\stackrel{\rightharpoonup}{V A}$.
Since int $(\overrightarrow{A B}) \leq \operatorname{int}(\overrightarrow{A B})$ we get that int $(\overline{A B})$ and P lie on the same side of $\overleftrightarrow{V A}$.
Note that int $(\overrightarrow{V P})$ lies on one side of $\stackrel{\rightharpoonup}{V A}$ by problem 1.
Let $p^{\prime}-V-p$.
Then, int $(\overrightarrow{V P})$ is on one side of $\overleftrightarrow{A V}$ and int $\left(\overrightarrow{V \rho^{\prime}}\right)$ is on the

Since $P \in \operatorname{int}(\overrightarrow{V P})$ we know int $(\overrightarrow{V P})$ of $\stackrel{A V}{ }$ other Side. and int $(\overline{A B})$ are un the same side of $A V$. Combine this with ($*$) gives $\overrightarrow{V P} \cap \operatorname{int}(\overline{A B}) \neq \phi$. By the previous how problem, $P \in$ int $(\angle A V B)$.
(3) Suppose that A, B, C are non-collinear in a Pasch geometry.

By the definition of int $(\angle A B C)$, we
 know that

$$
P \in \text { int }(\angle A B C)
$$

if
both P and C
lie on the same side of $\overleftrightarrow{B A}$ and P and A lie on the same side of $\overrightarrow{B C}$.
(4) Suppose A, B, C are non-collinear and $A-P-C$ in a Pasch geometry.

$$
[\text { Since } \operatorname{int}(\overline{A C})=\overline{A C}-\{A, C\}]
$$

Thus we only need to show that

$$
\operatorname{int}(\overline{A C}) \subseteq \operatorname{int}(\angle A B C)
$$

Let's show that all of int ($\overline{A C}$) lies on the same side of $\overleftrightarrow{B C}$.

Because A, B, C are non-collinear
we know that

$$
\begin{aligned}
& \stackrel{\text { We }}{ } \stackrel{\text { know }}{\stackrel{B C}{B C}} \underset{\leftrightarrow}{\overleftrightarrow{D}} .
\end{aligned}
$$

Thus, $\stackrel{\leftrightarrow A C}{\triangle} \overleftrightarrow{B C}=\{c\}$.
Since $\operatorname{int}(\overrightarrow{C A}) \subseteq \stackrel{A C}{ }$ and $C \notin \operatorname{int}(\overrightarrow{C A})$
this gives $\operatorname{int}(\overrightarrow{C A}) \cap \stackrel{\rightharpoonup}{B C}=\phi$.
Thus, by problem I (a) all of int $(\overrightarrow{C A})$ lies on the same side of $\overrightarrow{B C}$.
Since $A \in \operatorname{int}(\overrightarrow{C A})$ we know
 all of int $(\overrightarrow{C A})$ lies on the same side of $\stackrel{\rightharpoonup}{B C}$ as A does.
A similar argument shows that all of int ($\overrightarrow{A C}$) lies on the same side of $\overleftrightarrow{B A}$ as C.
Since $\operatorname{int}(\overrightarrow{A C}) \cap \operatorname{int}(\overrightarrow{C A})=\operatorname{int}(\overrightarrow{A C})$ the above shows that (i) all of $\operatorname{int}(\overline{A C})$ lies on the same side of $\stackrel{\leftrightarrow}{B C}$ as A does, and (ii) all of $\operatorname{int}(\overline{A C})$ lies on the same side of $\overrightarrow{B A}$ as C does.

Thus, by the def of int $(\angle A B C)$ we get that int $(\overline{A C}) \subseteq \operatorname{int}(\angle A B C)$.
(5) Suppose $\angle A V B$ is an angle and $\overrightarrow{V P} \cap \operatorname{int}(\overline{A B}) \neq \phi$.
Suppose $\overrightarrow{V P} \cap \operatorname{int}(\overrightarrow{A B})=\{Q\} . \leftarrow \begin{gathered}\text { Possibly } \\ P=Q\end{gathered}$
Then, $Q \in \operatorname{int}(\overline{A B})$.
So, $A-Q-B$.
Thus, A and Q we un $\underset{\forall B}{*}$. $](x)$ the same side of $\overleftrightarrow{V B}$.
Since $\overrightarrow{V P} \cap \overleftrightarrow{V B}=\{v\}$ we

Know int $(\overrightarrow{V P}) \cap \overrightarrow{V B}=\phi$.
Thus, since int $(\overrightarrow{V P})$ is convex we know

$$
\begin{aligned}
& \text { since } \operatorname{int}(\overrightarrow{V P}) \text { is convex we know } \\
& \overrightarrow{P Q} \subseteq \operatorname{int}(\overrightarrow{V P}) \text { and so } \overrightarrow{P Q} \cap \underset{V B}{ } \text {. }
\end{aligned}
$$

$\overline{P Q} \subseteq$ int $(\overrightarrow{V P}$ ane on the
Thur, P and Q ane ride of $\overleftrightarrow{V B}$.
same
BY $(*)$ and $(* *)$ and P are on the $]$ same side of $\overleftrightarrow{V B}$.
A similar argument will give P, Q, B are on the same side of $\overleftrightarrow{V A}$.

Thus, P and B we on the $](i i)$
same side of $\overrightarrow{V A}$
By (i) and $(i i)$ we get $p \in \operatorname{int}(\angle A V B)$.
(6) Let A, B, C, D, P be points in a Pasch geometry. Suppose that A, B, C are non-collinear and that $A-B-D$.
(\triangle) Suppose that $P \in \operatorname{int}(\angle A B C)$ Then, P and C are on the same side of $\widehat{A B}$ Since $\stackrel{\leftrightarrow}{A B}=\stackrel{\leftrightarrow}{D B}$ this
 means P and C are on the same side of $\stackrel{\rightharpoonup}{D B}$.

$(ح)$ Suppose that $C \in$ int $(D B P)$.
(7) Let A, B, C be non-collinear points in a pasch geometry. We must show that int ($\triangle A B C$) is convex. Let H, be the side of $\overleftrightarrow{A B}$ that contains C. Let H_{2} be the side of $\overleftrightarrow{B C}$ that contains A Let H_{3} be the side of $\stackrel{\leftrightarrow}{C A}$ that contains B.

Since a Parch geometry satisfies the PSA axiom we have that H_{1}, H_{2}, H_{3} are convex.
By Homework 7 we know then that $\mathrm{H}_{1} \cap \mathrm{H}_{2} \cap \mathrm{H}_{3}$ is a convex set.

Hence,

$$
\operatorname{int}(D A B C)=H_{1} \cap H_{2} \cap H_{3}
$$

is convex.

